Reminder

\[\chi(N, u, s) \xrightarrow{-T} A(N, u, T) \]

\[+pV \]

\[H(N, p, s) \xrightarrow{-T} G(N, p, T) \]

These come from Legendre transforms, like

\[A(N, u, T) = \chi(N, u, s) - S \left(\frac{\partial \chi}{\partial s} \right)_{N, u} \]

Why +pV for example,

@ const N \[d\chi = p \left(\frac{\partial \chi}{\partial y} \right)_s dy + \left(\frac{\partial \chi}{\partial y} \right)_V dV \]

but first law \[d\chi = -pdV + d\theta = Tds \]

So \[H(N, p, s) = \chi - V \left(\frac{\partial \chi}{\partial V} \right)_{s, n} = \chi + pV \]
Now that we know what variables thermodynamic potentials depend on, we can derive relations between derivatives

\[G(p, T) \Rightarrow \quad dG = \left(\frac{\partial G}{\partial p} \right)_T dp + \left(\frac{\partial G}{\partial T} \right)_p \]

But also know \(G = E - TS + PV \)

\[\Rightarrow dG = dE - TS - TSdT + pdV + VdP \]

\[= (dE - TSdS + pdV) - SDT + VdP \]

\[\Rightarrow dG = -SDT + VdP \]

So \(\frac{\partial G}{\partial T} \bigg|_p = -S \)

\(\frac{\partial G}{\partial p} \bigg|_T = V \)

This is how entropy measured in experiment can be used to measure volume changes in reactions.
Table S.1: these kinds of relationships

one useful property \(\left(\frac{\partial x}{\partial y} \right)_z = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_z} \)

Return to \(T = \left(\frac{\partial E}{\partial S} \right)_V \)

\(= \left(\frac{\partial S}{\partial E} \right)_V = \frac{1}{T} \) amount entropy changes from

increase in \(E \) is related to \(\frac{1}{T} \)

Maxwell relations

Cross derivatives give surprising relationships between variables

\(dG = \left(\frac{\partial G}{\partial P} \right)_T dP + \left(\frac{\partial G}{\partial T} \right)_P dT \), exact differential

\(= \mu dP - TS dT \)

so \(-\left(\frac{\partial S}{\partial P} \right)_T = \left(\frac{\partial V}{\partial T} \right)_P \leftarrow \) easy to measure

hard to measure
Mixtures of multiple species

So far we have not really discussed mixtures of species

\[
\begin{array}{ccc}
A & A & B \\
A & B & A \\
A & A & B
\end{array}
\]

may have \(NA + NB = N \) molecules

or \(n_A, n_B \) moles of A & B

fraction of A is \(\chi_A = \frac{n_A}{n_A + n_B} \), \(\chi_B = \frac{n_B}{n_A + n_B} \)

\(\chi_A + \chi_B = 1 \)

Molar quantities, divide out by number of moles so eg

\(\bar{E} = \frac{E}{n} \) if one component. Can also define terms like \(\bar{E}_A \) so \(\bar{E} = \bar{E}_A + \bar{E}_B \)

then \(\bar{E} = \chi_A \bar{E}_A + \chi_B \bar{E}_B \) and \(\bar{E}_A = \frac{E_A}{n_A} \)

Now interesting to note that quantities like \(\bar{E}_A \) depend on \(\chi_A \) since A-A, A-B and B-B interactions can differ
Example of molar volumes

Let $V_A = \frac{V_A}{n_A}$ for a system

and \bar{V}_A^* be the volume of A per mole

in a solution with only A ($X_A = 1$)

Then for a mixture $\bar{V}_{\text{ideal}} = X_A \bar{V}_A^* + X_B \bar{V}_B^*$

What happens when you add EtOH & water?

$V_{H_2O}^* \approx 18 \text{ mL/mol}$

$V_{\text{EtOH}}^* \approx 57 \frac{\text{ mL}}{\text{ mol}}$

(1 atm room temp)

Add 50 mL + 50 mL get 97 mL, non-ideal!

\[V_{\text{H}_2\text{O}} \] \[V_{\text{EtOH}} \]

\[\bar{V} \]

ΔV

\[\begin{align*}
\bar{V}_A &= \frac{50}{18} = 2.8 \\
\bar{V}_B &= \frac{50}{57} = 0.88 \\
x_{\text{EtOH}} &= 0.24, \quad \Delta V \approx -0.8 \text{ mL/mol} \\
\Delta V &= \approx -2.9
\end{align*}\]

Since $V(n_A, n_B) \Rightarrow dV = \left(\frac{\partial V}{\partial n_A}\right)dn_A + \left(\frac{\partial V}{\partial n_B}\right)dn_B$

$\Delta \bar{V}_A$ depends on \bar{V}_B

To get volume, integrate along a path of fixed composition...
That was molar volumes, go back to Energies / Free Energies

Define \(\overline{G}_A = G_A/n_A = nA \) so \(G = \sum_{i=1}^{\text{species}} \mu_i n_i \)

But also, \(\overline{G}_i = \mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{T, p, n_A} \)

2 potentially conflicting results

(1) \(G(P, T, n_1, n_2, ...) \Rightarrow dG = \left(\frac{\partial G}{\partial P} \right) dP + \left(\frac{\partial G}{\partial T} \right) dT + \left(\frac{\partial G}{\partial n_i} \right) d\mu_i + \left(\frac{\partial G}{\partial n_A} \right) d\mu_A \\
= -SDT + UdP + \sum \mu_i d\mu_i \)

(2) \(G = \sum \mu_i n_i \Rightarrow dG = \sum (\mu_i d\mu_i + n_i d\mu_i) \)

Comparing, this means \(\sum n_i d\mu_i = -SDT + UdP \)

or \(\sqrt{SDT - UdP + \sum n_i d\mu_i = 0} \)

[\text{Gibbs - Duhem Relationship}]

Chemical potentials not independent

For \(dT = 0 \) and \(dP = 0 \), condition is \(\sum n_i d\mu_i = 0 \)

or divide by \(\sum n_i \Rightarrow \sum x_i d\mu_i = 0 \)

\(x_A d\mu_A + x_B d\mu_B = 0 \) for 2 species

\(\Rightarrow \left(1 - x_A \right) \mu_B = -x_A \mu_A \) \(\Rightarrow d\mu_B = -x_A / \left(1 - x_A \right) d\mu_A \leq 0 \) if \(d\mu_A > 0 \)
Maxwell Relations including composition
\[d \varepsilon = -S \, dT + V \, dp + \mu_1 \, dn_1 + \mu_2 \, dn_2 \]
\[\Rightarrow \left(\frac{\partial S}{\partial n_1} \right)_{p,n_2,T} = \left(\frac{\partial \mu_1}{\partial T} \right)_{p,n_1,n_2} \]

Partial Pressure
\[p_i = X_i \, p_{total} \quad \text{b/c already intensive, just define this way} \]

\[\sum p_i = \sum X_i \, p_{total} = p_{total} \sum X_i = p_{total} \]

For ideal gas \(p_i = n_i \, RT / N \) b/c non interacting

\[p_T = \frac{RT}{V} \sum n_i \quad \text{(Dalton's law)} \]

For non-ideal: repulsion/excluded volume increases pressure

... at larger decreases pressure
Ch 6: chemical potentials & phase transitions

Phases of matters - solid, liquid, gas are simple examples. Each differs in bulk properties; density, compressibility, heat capacity etc.

Reminder:

Other phase types:
- Carbon: diamond, graphite, C60
- Kinetics can be very slow, e.g., this case

Not eq. phase: supercooled liquid/glass
diff materials properties, no discontinuity

"Metastable"