Review of Carnot cycle from last time; 2 steps where system does work (\(w_{sys} < 0\)) and two where the system has work done on it (\(w_{sys} > 0\)).

Isothermal - adiabatic - Isothermal - adiabatic

 Expansion cooling expansion heating

Ideal gas:

Isothermal \(\Delta E = 0\), \(q = -w\)

\[w_{sys} = -\int_{V_1}^{V_2} P_{sys} \, dv = -\int_{V_1}^{V_2} \frac{NRT}{v} \, dv = -NRT \ln \left(\frac{V_2}{V_1} \right)\]

\[q = NRT \ln \left(\frac{V_2}{V_1} \right), \text{ heat in work out if expanding}\]

Adiabatic \(q = 0\), \(\Delta E = ncv \Delta T = w\)

cool: \(T_c - T_h < 0 \Rightarrow w < 0\), does work
① Isothermal expansion
\[\frac{q_1}{nRT_h \ln \left(\frac{V_B}{V_A} \right)} - nRT_h \ln \left(\frac{V_B}{V_A} \right) \]

② Adiabatic expansion
\[0 \quad \Delta E = w = C_v (T_c - T_h) \]

③ Isothermal compression
\[nRT_c \ln \left(\frac{V_D}{V_c} \right) - nRT_c \ln \left(\frac{V_D}{V_c} \right) \]

④ Adiabatic compression
\[0 \quad \omega = + C_v (T_h - T_c) \]

\[w_{\text{total}} = - nRT_h \ln \left(\frac{V_B}{V_A} \right) - nRT_c \ln \left(\frac{V_D}{V_c} \right) \]

\[w_{\text{done}} = - w_{\text{total}} = q_1 + q_3 \]

\[\epsilon = - \frac{w}{q_1} = - \frac{q_1 + q_3}{q_1} = 1 + \frac{q_3}{q_1} \]

\[\frac{q_3}{q_1} = \frac{nRT_c \ln \left(\frac{V_D}{V_c} \right)}{nRT_h \ln \left(\frac{V_B}{V_A} \right)} \]

For adiabatic expansion, shumed

\[\frac{V_f}{V_i} = \left(\frac{T_f}{T_i} \right)^{-C_v/nR} \Rightarrow \ln \left(\frac{V_D}{V_c} \right) / \ln \left(\frac{V_B}{V_A} \right) = -1 \]
\[G = 1 - \frac{T_c}{T_h} \]

as \(T_h \to \infty \), \(G \to 1 \)
as \(T_c \to 0 \), \(G \to 1 \)

Now \(\frac{\Phi_3}{\Phi_1} = -\frac{T_c}{T_h} = -\frac{T_3}{T_1} \)

\[\Rightarrow \frac{\Phi_1}{T_1} + \frac{\Phi_3}{T_3} = 0 \]

Suggests a quantity that is a
state function, because any path around cycle adds up to zero.
Can make many small cannot cycles add up and take the limit to small sites

\[\sum \varphi_i^{\text{rev}} = 0 \rightarrow \oint \frac{dq^{\text{rev}}}{T} = 0 \]

cycle suggests we define \(dS = dq^{\text{rev}} / T \)

state function & \(\oint dS = 0 \)

\[\Delta S = \int_{i}^{f} dS \] regardless of path

Entropy for some reversible processes

1. Const P expansion \[\frac{V_f}{V_i} \]

\[\Delta S = \int_{i}^{f} \frac{dq^{\text{rev}}}{T} = \int_{T_i}^{T_f} C_P dT \]

\[dq = C_P dT \]

\[S_{\text{ideal gas}} = C_P \ln \left(\frac{v_2}{v_1} \right) \text{ b/c } v_2 T \]
(2) Const volume
\[\Delta S = C_v \ln \left(\frac{T_2}{T_1} \right) \] for some reason
\[= \frac{3}{2} R \ln \left(\frac{T_2}{T_1} \right) \] more ideal gas

(3) Const \(T \), \(\text{d}E = 0 \), \(\text{d}q = -w = P \text{d}V \)
\[\Delta S = \int_{V_1}^{V_2} \frac{P \text{d}V}{T} = \int_{V_1}^{V_2} \frac{nR \ln \left(\frac{V_2}{V_1} \right)}{T} \]
\[\approx \text{ideal gas} \]

in these two, have only \(T \) or \(V \)
because other is constant

(4) adiabatic - \(\text{d}q = 0 \) \(\Rightarrow \) \(\Delta S = 0 \)
Cornet cycle \(T \)

\[\begin{array}{c}
\text{isothermal expansion} \\
\text{adiabatic expansion} \\
\text{adiabatic compression} \\
\text{isothermal / compression}
\end{array} \]
Let's look at heat flow instead of cycles.

\[T_{AV} \quad T_{BV} \]

(\text{isolated})

\[V_A \text{ fixed } V_B \text{ fixed } \]

heat flows until \(T_L = T_R \)

\[\begin{align*}
 E &= E_A + E_B \\
 dE &= dE_A + dE_B \\
 dq &= TdS
\end{align*} \]

\[\begin{align*}
 dE &= dq + \frac{dE}{T} \\
 dE &= dq + \omega \frac{dE}{T}, \text{ const volume}
\end{align*} \]

So \(dS = dS_A + dS_B = dE_A / T_A + dE_B / T_B \)

But here \(dE_A = -dE_B \)

\[\Rightarrow dS = dE_A \cdot \left(\frac{1}{T_A} - \frac{1}{T_B} \right) \]

If \(T_A > T_B \), \(dE_A < 0 \)

\[\Rightarrow \frac{1}{T_A} - \frac{1}{T_B} < 0 \]

Entropy increases!

\[\text{Not conserved for closed sys.} \]

In fact = 0 for equilibrium.
and spontaneous processes occur until entropy is maximized

\[ds > 0 \] (spontaneous process, isolated system)

\[ds = 0 \] (rev process isolated system)

For an irreversible process, entropy is produced in the system

Now, if we are not in an isolated system

\[ds = dS_{\text{prod}} + dS_{\text{exch}} \]

\[= dS_{\text{prod}} + \frac{dq_{\text{rev}}}{T} \]

For reversible, \(dS = \frac{dq_{\text{rev}}}{T} \)

For irreversible, \(dS_{\text{prod}} > 0 \)

\[\Rightarrow ds > \frac{dq_{\text{rev}}}{T} \]

\[ds \geq \frac{dq}{T} \] for any process (equal for rev)

\[ds \geq \int \frac{dq}{T} \leq 2\text{nd law eqn} \]
Note, universe is closed system so $dq=0$ & $dS>0$ for any spontaneous process.

Entropy as a thermodynamic potential ξ says how far are we from eq. (like $|A\xi-[A\xi]|$)

Then S

\[S'(S)=\frac{3p}{\xi_0} \]

$S'_{\xi_0} = 0 \quad @ \quad eq.1 \quad S > 0 \quad if \quad \xi > 0$

$S'_{\xi_0} > 0 \quad if \quad \xi < 0$

Acts like a potential
Ex: heat flow between two bodies

\[T_f = \frac{T_A + T_B}{2} \]

Entropy is a state function, so although irreversible, can do constant volume reversible cooling so

\[\Delta S_A = C_v \ln \left(\frac{T_f}{T_A} \right) \quad \text{(same substance)} \]

\[\Delta S_B = C_v \ln \left(\frac{T_f}{T_B} \right) \]

\[\Delta S = \Delta S_A + \Delta S_B \]

\[= C_v \ln \left(\frac{(2T_A + T_B)^2}{4T_A T_B} \right) \]

If \(T_A = T_B = 0 \)

otherwise always positive

\[\because T_A^2 + 2T_A T_B + T_B^2 - 4T_A T_B \]

\[= (T_A - T_B)^2 \geq 0 \]