Canonical Ensemble

Last time

\[m \text{ states with energies } \{E_1, E_2, \ldots, E_m\} \]

...in a system

make \(A \) copies of our system

\[N_1 = \text{num systems in state } 1 \]

\[N_2 = \text{# in } 2 \text{ et } \]

Prob being in state \(i = P_i = \frac{N_i}{A} \)
\[p_i = \frac{e^{-\beta E_i}}{\sum_{i=1}^{m} e^{-\beta E_i}} \]

\[Q(T) = \frac{1}{Z} \sum_{i=1}^{m} e^{-\beta E_i} \]

\[\langle \mathcal{E} \rangle = \frac{1}{Z} \sum_{i=1}^{m} E_i e^{-\beta E_i} \]

\[\frac{\partial Q}{\partial \beta} = - \frac{1}{Q} \frac{\partial Q}{\partial \beta} \]

\[\partial \mu \]
$U = -\partial \ln \Omega \over \partial \beta$

β is an unknown constant

$S = -k_B \sum_{i=1}^{n} p_i \ln p_i$

Gibbs Entropy

$S = k_B \beta U + k_B \ln \Omega$

$\partial U = dq + dw = Tds - \partial U$

$U(s,v) \Rightarrow \delta U = \left(\partial U \over \partial s \right)_v ds + \left(\partial U \over \partial v \right)_s \delta v$
\[T = \frac{1}{k_B \beta} \Rightarrow \beta = \frac{1}{k_B T} \]

Get rid of \(\beta \)'s for now:

\[
U = \frac{-\partial U}{\partial \beta} = -\left(\frac{\partial U}{\partial T} \right) \left(\frac{\partial T}{\partial \beta} \right)
\]

\[
\left(\frac{\partial T}{\partial \beta} \right) = \left(\frac{\partial \beta}{\partial T} \right)^{-1} = \frac{1}{k_B} \frac{\partial}{\partial T} \left(\frac{1}{T} \right) = -\frac{1}{k_B T^2}
\]

\[
U = +k_B T^2 \frac{\partial U}{\partial T}
\]
\[S = k_B B U + k_B \ln Q \]

\[= k_B \left[\frac{U}{k_B T} \right] + k_B \ln Q \]

\[= \frac{U}{T} + k_B \ln Q \]

Remember: thermodynamic potentials are maximized or minimized at Eq. ST at eq for NUE. Go far m\textsubscript{17}, T.
\[A = U - TS \]

minimized @ eq

for const \(N, u, T \)

canonical ensemble

\[A = U - T \left[\frac{U}{T} + k_B \ln Q \right] \]

\[A = -k_B T \ln Q \]

similar to

\[S = k_B \ln W \]
Another important quantity is C_V

$$C_V = \left(\frac{\partial u}{\partial T} \right)_V$$

$\text{energy required to increase by } T^2$

$$= \left(\frac{\partial u}{\partial \beta} \right)_V \left(\frac{\partial \beta}{\partial T} \right)_V = -\frac{1}{K_B T^2} \left(\frac{\partial u}{\partial \beta} \right)_V$$

$$u = -\frac{\partial u}{\partial \beta}$$

$$C_V = \frac{1}{K_B T^2} \cdot \left(\frac{\partial^2 u}{\partial \beta^2} \right)_V$$
\[C_U = -\frac{1}{k_BT^2} \left(\frac{\partial u}{\partial \beta} \right)_V \]

\[u = -\frac{\partial mQ}{\partial \beta} = -\frac{1}{Q} \frac{\partial Q}{\partial \beta} \]

\[= \pm 1 \frac{1}{k_BT^2} \frac{C}{\partial \beta} \left[\frac{1}{Q} \frac{\partial Q}{\partial \beta} \right] \]

\[\left[\frac{\partial}{\partial \beta} \frac{\partial Q}{\partial \beta} + \frac{1}{Q} \frac{\partial Q}{\partial \beta} \right] \]
$$C_v = -\frac{1}{k_B T^2} \left[\frac{\partial (\frac{1}{2})}{\partial \beta} \frac{\partial Q}{\partial T} + \frac{1}{\theta} \frac{\partial}{\partial \beta} \left[\frac{\partial Q}{\partial \beta} \right] \right]$$

$$\left[\left(-\frac{1}{2} \frac{\partial Q}{\partial \beta} \right) \left(\frac{\partial Q}{\partial T} \right) + \frac{1}{\theta} \frac{\partial}{\partial \beta} \left[\frac{\partial Q}{\partial \beta} \right] \right]$$

$$\frac{1}{\theta} \frac{\partial Q}{\partial \beta} = \frac{\partial}{\partial \beta} = \frac{\partial Q}{\partial \beta} = \langle 3 \rangle$$

$$C_v = -\frac{1}{k_B T^2} \left[-\langle 3 \rangle \langle 3 \rangle + \frac{1}{\theta} \frac{\partial}{\partial \beta} \frac{\partial}{\partial \beta} Q \right]$$
\[C_V = \frac{1}{k_B T^2} \left[-\langle E^2 \rangle + \frac{1}{2} \frac{\partial^2 \Omega}{\partial \beta^2} \right] \]

\[\frac{\partial \Omega}{\partial \beta} = \sum_{i=1}^{n} (E_i - \langle E_i \rangle) e^{-\beta E_i} \]

\[\frac{1}{Q} \frac{\partial}{\partial \beta} \left[\frac{\partial \Omega}{\partial \beta} \right] = \sum_{i=1}^{n} \frac{E_i^2}{\langle E_i \rangle} e^{-\beta E_i} \]

\[C_V = \frac{1}{k_B T^2} \left[\langle E^2 \rangle - \langle E \rangle^2 \right] = \frac{1}{k_B T^2} \text{Var}(E) \]
\[C_v = \left(\frac{\partial U}{\partial T} \right)_v = \frac{1}{k_B T^2} \text{Var}(U(T)) \]

Fundamental Points:

1) **Linear response**
 - A small change in a control parameter, results in a small response in a conjugate property.
 - Linear response is proportional to equilibrium fluctuations.
2) wide distribution of energies means you have a large heat capacity

a) 2 ways to have a large variance

\[P(E) \]

\[\sigma = \sqrt{\text{Var}(E)} \]

two states

\[\mathcal{E}_1, \mathcal{E}_2 \]
Phase transition 1st order

\[\langle E \rangle \]

\[\Rightarrow \]

\[\text{Efusion} \downarrow \]

\[\frac{\partial E}{\partial T} \text{ goes to } \infty \]

\[T_m \]

\[T = T_m \]

\[T > T_m \] for small \(N \)

\[T_n < T_m \]
\[P(\varepsilon) \mid N \to \infty \]

\[\text{Var}(\varepsilon) \to \varepsilon \quad \text{as} \quad N \to \infty \quad @ T_m \]
Systems w/ discrete energy levels & continuous energy

Example discrete system

Previously: we discussed energies E_1, E_2, \ldots, E_n

Single particles or multiple

\[E_2 - \frac{B}{A} \quad \text{or} \quad \frac{A}{B} \quad \text{or} \quad \frac{A}{B} \]

\[E_1 - \frac{A}{B} \]

\[E_0 = 2E_1 \quad \text{or} \quad E_1 + E_2 \quad \uparrow \quad 2E_2 \]

\[E_3 \]

\[E_0 \]

\[E_n \]
1 particle in a two level system

\[Q = e^{-\beta E_1} + e^{-\beta E_2} \]

\[P_1 = \frac{e^{-\beta E_1}}{e^{-\beta E_1} + e^{-\beta E_2}} \quad P_2 = \frac{e^{-\beta E_2}}{e^{-\beta E_1} + e^{-\beta E_2}} \]

\[= \frac{1}{1 + e^{-\beta (E_2 - E_1)}} = \frac{1}{1 + e^{-\beta \Delta E}} \]

all that matters here is the gap could say \(E_1 = 0 \quad E_2 = \Delta E \)
\[P_1 = \frac{1}{1 + e^{-\Delta \epsilon/k_B T}} \]
\[P_2 = e^{-\Delta \epsilon/k_B T} \]
\[\frac{P_1}{P_2} = \frac{1}{1 + e^{-\Delta \epsilon/k_B T}} \]

For large \(T = \infty \), \(P = \frac{1}{k_B T} = 0 \)

\[e^0 = 1 \]

\[P_1 = P_2 = \frac{1}{2} \]

For small \(T = 0 \), \(e^{-\infty} = 0 \)

\[e^{\infty} = 0 \]
\[\langle E \rangle = \sum_{i=1}^{m} E_i P_i = \frac{\varepsilon_1}{1 + e^{-\beta \Delta E}} + \frac{\varepsilon_2 e^{-\beta \Delta E}}{1 + e^{-\beta \Delta E}} \]

\[= \frac{\varepsilon_1 + \varepsilon_2 e^{-\beta \Delta E}}{1 + e^{-\beta \Delta E}} \]

\[\text{as } T \to \infty \]

\[\langle E \rangle = \frac{\varepsilon_1 + \varepsilon_2}{2} \]

\[\text{as } T \to 0 \]

\[\langle E \rangle = \frac{\varepsilon_1 + 0}{1 + 0} = \varepsilon_1 \]
Next time:

consider n states $\to \infty$

continuous equivalent of

Q, for position & velocity states

also multiple particles