Independent events:

Example: 2 people each roll a die, what is prob of 2 sixes?

Combine into a single event to see rule

\[\frac{1}{36} \text{ possible events} \]

General rule for independent outcomes

\[P(\text{ANB}) = P_A \times P_B \]

Be careful depending on question. What about prob of \(\{5, 6\} \)?

\[P(\text{person1 - 6 } \text{ and } \text{person2 - 5} = \frac{1}{36} \text{ so prob of } \]

but also opposite case = \(\frac{1}{36} \), \(11 \) scoring \(11 \)

\[\text{or } \]

\[\frac{2}{36} = \frac{1}{18} \]

(this is an example of the "or" rule for the joint outcomes, add area)

What about prob that one rolls 5 or the other rolls 5 (either, not both)
What about \(A = 2 \) or \(B = 6 \)

but not \(A = B = 2 \)

\[
P_{A=2 \cap B=6} = P_{A=2} + P_{B=6} - P_{A=2 \cap B=2} - P_{A=6 \cap B=6}
\]

Not "\(\sim \)" prob event \(X \) doesn't happen = \(1 - P_X \)
For a sequence of observations \(\xi_{0;3} = \{x_1, x_2, x_3 \ldots x_n\} \)

\[D_0 = x_1 \land o_2 = x_2 \land \ldots \land o_N = x_N = \prod_{i=1}^{N} P_{Xi} \]

[Worksheet, 5 min]

How does order matter?

→ How many ways to rearrange \(N \) objects → Turns out:

\[N! = N(N-1)(N-2) \ldots 1 \]

This is because, imagine \(N \) slots

First item has \(N \) choices, Second item \(N-1 \), and so forth, until all
Returning to coin flips, a sequence would be like H, T, T, H, T, ...

prob would be \(P_{01} = P_H P_T P_T P_H P_T \)...

Every seq is unique\(= P_{H}^{NH} P_{T}^{NT} \)

\[\Rightarrow = P_H^{NH} (1-P_H)^{N-\text{NH}} \]

mutual exclusive

What if we just want to know how many seqs of length \(N \) have \(NH \) heads then these could come in any order, and the prob of \(NH/N \) is much higher

What is \# ways to order \(NH \& NT \) items?

ordering coins in \(N \) slots

w.l.o.g. Put in \(NH \) coins, as before

\(N(N-1) \cdots (N-\text{NH}) \cdots \) but only down to \(N-N_H \)

\(G = \frac{N!}{NH!} \) In every case there are \(NT \) slots

Filled w/ T's, which can go in \(NT! \) order

Each of these sequences is identical if indistinguishible so

\(\binom{N}{NT} = \frac{N!}{NH! \cdot NT!} = \frac{N!}{NH!(N-N_H)!} = \frac{N!}{(N_T!)(N-N_T)!} \)
These values, written \(\binom{N}{M} \) or \(N \choose M \), are called “binomial” coefficients b/c they are the terms in expansion

\[
(a + b)^N = a^N + \binom{N}{1}a^{N-1}b + \ldots = \sum_{i=0}^{N} \binom{N}{i}a^{N-i}b^i
\]

\[
\text{Prob } (N_A; N) = \binom{N}{N_A} P_A^{N_A} (1-P_A)^{N-N_A}
\]

\(\text{Binomial distribution} \)

\[
\text{Normalized: } \sum_{N_A=1}^{N} \binom{N}{N_A} P_A^{N_A} P_B^{N-N_A} = (P_A + P_B)^N = 1^N = 1 \checkmark
\]

\[\text{Familiar terms: } 1 \ 2 \ 1 \in \text{ Pascal's triangle} \]

\[1 \ 3 \ 3 \ 1 \text{ triangle} \]

\(\text{Key: Meaning is, probability of exactly } m \text{ successes in } N \text{ trials } (\text{Binom}(N,m)) \)

\[
p(m) \propto p^{m/2}
\]

\[
p(m) \propto p^{N/2}
\]
Mean and variance

Mean is simple average

Know, if \(\{X_1, X_2, X_3, \ldots \} \), average is

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{< this is a sample mean, it is computed from data}
\]

If we have a distribution of "X's"

\[
\mu = \frac{1}{n} \sum_{i=1}^{n} X_i \quad P(X_i) \quad \text{also written } \langle X \rangle
\]

Another important quantity is variance, \(\sigma^2 \)

\[
\sigma^2 = \langle (X - \langle X \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 = \sum_{i=1}^{n} (X_i - \mu)^2 P(X_i)
\]

For data \(\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{x})^2 \) explain

assumed \(X_i \) is "sampled" from dist \(\mathcal{D} \)

Binomial dist

\[
\mu = Np \quad \sigma^2 = Np(1-p)
\]

\(\Rightarrow \frac{\sigma}{N} \sim \frac{1}{\sqrt{N}} \) so dist gets more rel narrow
Poisson Distribution

Key: prob of a number of random events happens in fixed interval (usually time)
Like number of decay events of radioactive nuclei per hour or number of proteins in some area in a membrane.

Comes from Binom $N \rightarrow \infty$ trials of rare events.

$p(n, \mu) = \frac{\mu^n e^{-\mu}}{n!}$ where μ is avg number expected.

Eg: $\sigma_{protein} = \frac{1}{\mu m^2}$ look at 100 nm² area

$\mu = \sigma A = \frac{100 mm^2}{1x10^6 nm^2} = 1x10^{-4}$

most likely 0!

$\sigma^2 = \mu$

$\sigma/\mu \sim \sqrt{\mu}$ also