Reminder: goal of stat mech is to compute average observables

\[\langle O \rangle_{\text{ensemble}} = \int dx \, O(x) \, P(x) \]

If const NVT, \(P(x) = e^{-\beta H(x)} / Z \)

Some problems can solve exactly, but most not. Will talk about how to solve numerically

First: finish canonical ensemble

\[A = -k_B T \ln \Xi \]
\[P = \frac{-e^A}{\Xi} \text{ etc} \]
Also known \(E = -\frac{\Xi}{e^A} \)
First finish ideal gas:

\[Q = \frac{1}{N!} \left(\frac{V}{N^3} \right)^N = \frac{1}{N!} v^n (2\pi m k_B T)^{3/2} \]

\[= \beta^{-3/2} N. \text{ stop} \]

\[E = -\frac{\partial \ln Q}{\partial \beta} = \frac{3}{2} N \frac{\partial \ln \beta}{\partial \beta} = \frac{3}{2} N k_B T \quad \checkmark \]

One more thermo quantity of importance!

\[C = \frac{\partial E}{\partial T} \quad C_v = \left(\frac{\partial E}{\partial T} \right)_V \quad C_p = \left(\frac{\partial E}{\partial T} \right)_p \]

Ideal gas: \(C_v = \frac{3}{2} N k_B \)

In general, \(C = \frac{\partial E}{\partial T} = \frac{\partial E}{\partial \beta} \frac{\partial \beta}{\partial T} = \]

\[= -\frac{1}{k_B T^2} \frac{\partial E}{\partial \beta} = -k_B \beta^2 \frac{\partial E}{\partial \beta} \]
Now, for NVT

\[C_V = -k_B \beta^2 \frac{\partial E}{\partial \beta} \quad \text{but} \quad E = -\frac{\beta}{\partial \beta} \]

\[= k_B \beta^2 \frac{\partial}{\partial \beta} \left[\frac{1}{2} \frac{\partial^2}{\partial \beta} \right] \]

\[= k_B \beta^2 \left[-\frac{1}{2} \frac{\partial^2}{\partial \beta^2} + \frac{1}{2} \frac{\partial^2}{\partial \beta^2} \right] \]

\[= k_B \beta^2 \left[\langle E^2 \rangle - \langle E \rangle^2 \right] \]

\[= k_B \beta^2 \text{Var}(E) \]

\[\tau = \int dx e^{-\beta H(x)} \frac{\partial^2}{\partial \beta^2} \]

\[\frac{\partial E}{\partial T} = \frac{1}{k_B \tau^2} \text{Var}(E) \]
Example of fluctuation dissipation theorem: fluctuations @ E_g

prop to how quantity necessary E_g

(Onsager regression)

What does $\text{Var}(E)$ mean physically?

\[E(\tau) \]

Energy goes in & out of bath

How big is fluct relative to δE?

\[\frac{\delta E}{E} = \sqrt{\text{Var}(E)} \times \frac{1}{N} \approx \frac{1}{\sqrt{2N}} \]
These energy fluctuations are what allow chemical systems to overcome barriers and undergo reactions. But how do we calculate properties if we can't explicitly get \(f \)?

Consider the problem of computing

\[
\langle 0 \rangle = \int dx \, O(x) \, P(x)
\]

First, let's consider that most observables may only depend on position

\[
\langle 0 \rangle = \int dx \, \int p^n \, O(x) \, e^{-\beta x^2 / m + U(x)}
\]

and \(H = \sum p_i^2 / 2m + U(x) \).
Then \(\langle 0 \rangle = \frac{\text{const}}{2} \int dx e^{-\beta u(x)} O(x) \)

Can define another pos. \(\tilde{z} = \int dx e^{-\beta u(x)} \)

\[\langle 0 \rangle = \int dx \, O(\tilde{x}) e^{-\beta u(\tilde{x})} \frac{1}{\tilde{z}} \]

Now consider 1d problem

\[\text{Can compute } \langle 0 \rangle \text{ numerically} \]

"by quadrature" \(\text{i.e.} \)

\[\langle 0 \rangle \approx \frac{k}{2} \sum_{j=1}^{N} O(x_j) P(x_j) \Delta x \]
Seems great, what's the problem.

For each dimension:

\# points = \(\frac{1}{\Delta x} \)

So for \(d \) dimensions

\[\# = \left(\frac{1}{\Delta x} \right)^d = e^{d \ln \left(\frac{1}{\Delta x} \right)} \]

Exponentially large \((d=3N \text{ gets big fast})\)

Idea of sampling:

Generate representative configs

\(X_t \propto P(X_t) \) somehow

Thus \(\langle O \rangle \approx \frac{1}{T} \sum_{t=0}^{T} O(X_t) \)

One way to do this is "Molecular Dynamics", mimic Newtonian temp.
First discuss Monte Carlo
genrate a "Markov Chain"
$X_t \to X_{t+1}$ depends only on
\textit{current state}

If this satisfies "detailed balance"

$$P(x_t) P(x_t \to x_{t+1}) = P(x_{t+1}) P(x_{t+1} \to x_t)$$

Then can be proven that

Chain \textit{converges} s.t. $X \sim P(x)$