Enhanced Sampling

Suppose \(U(x) \) or \(F(A) \)

\[F(A) = -KT \log S(M(x) - 1) e^{-\beta u(x) d^2} - F_0 \]

(Potential of mean force)

Rate \(A \rightarrow B \) \(\propto e^{-PA^+} \) or \(e^{-PA^+} \)

So if \(\text{rate} \gg N \Delta t \), then you will be trapped in \(A \) (or \(B \)) (rare event problem)

We need tricks to overcome this problem!

These are called enhanced or accelerated sampling methods, and generally estimate the (free) energy difference between \(A \) and \(B \):

\[\Delta A = -kT \log \frac{P_{B}}{P_{A}} \]

\(\Delta A \) like equilibrium constant

Idea: increase temp \(\rightarrow \) rate faster

\[T \propto \langle ke^\gamma \rangle \]

\[T \propto \langle ke^\gamma \rangle \]
\[<A>_{T_1} = \int dx \, P_1(x) \, A(x) \]

\[P_1(x) = \frac{\omega_1(x)}{Z_1} \]

\[e^{-\mu(x) / k_B T_1} \]

\[<A>_{T_1} = \int dx \, A(x) \, \frac{\omega_1(x)}{Z_1} \cdot \frac{\omega_2(x)}{Z_2} = \frac{Z_2}{Z_1} \cdot \int dx \, A(x) \, \frac{\omega_1(x)}{\omega_2(x)} \cdot \frac{\omega_2(x)}{Z_2} = \frac{Z_2}{Z_1} \cdot \int dx \, A(x) \, \frac{\omega_1(x)}{\omega_2(x)} = \frac{Z_2}{Z_1} \cdot \langle A \frac{\omega_1}{\omega_2} \rangle_{T_2} \]

For \(N, U, T = \frac{Z_2}{Z_1} \cdot \langle A e^{-\frac{1}{k_B T_1} \mu_1(x) + \frac{1}{k_B T_2} \mu_2(x)} \rangle_{T_2} \)

\[= \frac{Z_2}{Z_1} \cdot \langle A e^{-\frac{1}{k_B T_1} \mu_1(x)} e^{\frac{1}{k_B T_2} \mu_2(x)} \rangle_{T_2} \]

\[\frac{Z_1}{Z_2} = \int dx \, \omega_1(x) = \int dx \, \omega_1(x) \cdot \frac{\omega_2(x)}{\omega_2(x)} = \langle \frac{\omega_1(x)}{\omega_2(x)} \rangle_{T_2} \]

Concisely:

\[<A_{T_1}^{-1} > = \frac{< A \frac{\omega_1}{\omega_2} >_{T_2}}{< \frac{\omega_1}{\omega_2} >_{T_2}} \]
If $T_2 \gg T_1$, weights very small, numerical problem

Solution, run many sims @ drift T_2

$1/T_i \approx 1/T_{i+1}$ not too big

Replica exchange MD / Parallel Tempering

Every 2 steps, try to swap configs

Every 2 steps, try to swap configs

Then sample can be heated up & cooled down to T_1, overcoming barriers but still sampling @ T_1

Exchange prob? $P(CA \Rightarrow B) P(CA) = P(B \Rightarrow A) P(CB)$

$A = \{ \exists x \in T_e, y \in T_h \}$

$B = \{ \exists x \in T_h, y \in T_e \}$
\[P(A \rightarrow B) = \min \left(1, \frac{P(B)}{P(A)} \right) = \min \left(1, \frac{e^{-\frac{u(x)}{kT}}}{e^{-\frac{u(y)}{kT}}} \right) \]

\[\Rightarrow P(A \rightarrow B) = \min \left(1, e^{-\frac{u(x)}{k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) - \frac{u(y)}{k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)} \right) \]

\[= \min \left(1, e^{-\frac{u(x) - u(y)}{k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)} \right) \]

If \(T_1 < T_2 \), \(\frac{1}{T_1} - \frac{1}{T_2} < 0 \) and \(u(x) - u(y) \) prob \(< 0 \)

so swaps usually have prob \(< 1 \)

Now since swaps satisfy detailed balance and MD or MC @ each temp satisfies detailed balance, have a chain of

\[x_i \in T_1 \text{ s.t. } P(x_i) \rightarrow e^{-\frac{\Delta E}{kT}} \text{, } \& \]

\[\langle A \rangle \sim \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} A(x_i) \]
Idea #2: Go back to this picture

Idea: Torrie Valleau 1977

what if we add a potential to this
to reduce the barrier and correct for
the effect

Example $u'(x)$

Then $u(x) = u_0(x) + u'(x)$

This will give fast transitions from L to R

But how do we get

$\langle A \rangle = \int A(x) P_0(x) \, dx$ when

we are simulating with u_0 and

hence

$P_0(x) = \frac{e^{-\beta u_0(x)/2}}{Z_1} = \frac{\omega_0(x)}{Z_1}$,
We actually did this before, perturbation theory:

\[\langle A \rangle_0 = \int_{-\infty}^{\infty} \frac{dx}{Z_0} A(x) e^{-\beta U_0(x)} \]

like before, mult by \(\frac{e^{-\beta U(x)}}{Z_1} \) in top and

\[= \int_{-\infty}^{\infty} \frac{dx}{Z_0} A(x) e^{Bu(x)} \cdot \frac{e^{-\beta U(x)}}{e^{-\beta U(x)} - 1} \]

\[= \frac{Z_1}{Z_0} \int_{-\infty}^{\infty} dx \frac{A(x) e^{Bu(x)}}{e^{-\beta U(x)} - 1} \]

\[= \exp(-\beta U_0(x)) / \exp(-\beta U(x)) = \exp(-\beta U_0(x) + Bu(x)) \]

\[= \exp(-\beta U_0(x) + pU_0(x) + U(x)) \]

\[= \frac{ZA/W^2}{\langle e^{Bu(x)} \rangle_1} = \frac{CA/W^2}{\langle 1/w \rangle_1} \]

What is this weight doing? Correcting for every time there is something near \(x^* \) it should have less weight.

This works well for a simple 1d barrier crossing, but it does not necessarily make the simulation averages converge very fast.
I said for the average to be computed well, you should see every state multiple times.

Now, diffusion:

\[\langle S^2 \rangle \propto D t \]

so to explore whole space, \(t \sim \frac{L^2}{D} \)

If \(D \) is small or space is big, will take a long time.

Later idea: Umbrella Sampling (umbrella, cover all the space)

Many biased simulations with different \(w \) to make sure all space is covered.
Common to use $U_i'(x) = \frac{1}{2} \kappa (x - y_i)^2$

if instead $U_i'(x) = \begin{cases} 0 & |x - x_i| < a \\ \infty & o.w. \end{cases}$

Potential $U_i(x) = U_0(x) + U_i'(x)$

$= U_0(x)$ inside box

Now if $U(x)$ is actually PMF we don't know how to get that we need to compute

$A_i = -13.3 T \log \left[\int dx \chi(x) e^{-\mu_0 \alpha x} / \int dx e^{-\beta \phi(x)} \right]$

Where $\chi = \begin{cases} 1 & |x - x_i| < a \\ 0 & o.w. \end{cases}$

can do this with

$\langle \chi(x)/w_i'(x) \rangle / \langle 1/w_i'(x) \rangle$.
will get something like

\[P(x) \]

\[\Rightarrow \log P(x) \]

Methods exist to combine samples with other biasing functions.

Next: Use this for phase transitions.